Pac-Man-like mergers could explain massive, spinning black holes

Scientists have reported detecting gravitational waves from 10 black hole mergers to date, but they are still trying to explain the origins of those mergers. The largest merger detected so far seems to have defied previous models because it has a higher spin and mass than the range thought possible. A group of researchers, including Rochester Institute of Technology Assistant Professor Richard O Shaughnessy, has created simulations that could explain how the merger happened.


In a new paper published in Physical Review Letters, the researchers suggest that such large mergers could happen just outside supermassive black holes at the center of active galactic nuclei. Gas, stars, dust and black holes become caught in a region surrounding supermassive black holes known as the accretion disk. The researchers suggest that as black holes circle around in the accretion disk, they eventually collide and merge to form a bigger black hole, which continues to devour smaller black holes, becoming increasingly large in what O Shaughnessy calls "Pac-Man-like" behavior.

"This is a very tantalizing prospect for those of us who work in this field," said O Shaughnessy, a member of RIT s Center for Computational Relativity and Gravitation (CCRG). "It offers a natural way to explain high mass, high spin binary black hole mergers and to produce binaries in parts of parameter space that the other models cannot populate. There is no way to get certain types of black holes out of these other formation channels."

As the LIGO and Virgo collaboration continue to hunt for gravitational waves, O Shaughnessy and his fellow researchers hope to find signatures of large, spinning black holes that could help confirm their models. If their assumptions are correct, it could help us better understand how the cosmic web of galaxies assembles.

"This could be a unique way of probing the physics around these supermassive black holes in a way that could not be probed in any other way," said O Shaughnessy. "It offers unique insight into how the centers of galaxies grow, which is of course essential to understanding how galaxies as a whole grow, which explains most of the structure in the universe."

Materials provided by Rochester Institute of Technology . Original written by Luke Auburn. Note: Content may be edited for style and length.

Rochester Institute of Technology. " Pac-Man-like mergers could explain massive, spinning black holes." ScienceDaily. ScienceDaily, 8 November 2019. .

Rochester Institute of Technology. " Pac-Man-like mergers could explain massive, spinning black holes." ScienceDaily. (accessed November 9, 2019).
News Topics :
Similar Articles :
Gas glows brightly in this computer simulation of supermassive black holes only 40 orbits from merging. Models like this may eventually help scientists pinpoint real examples of these powerful binary...
Each black hole s mass is more than 800 million times that of our sun. As the two gradually draw closer together in a death spiral, they will begin sending...
A team of astronomers led by Erin Kara, the Neil Gehrels Prize Postdoctoral Fellow in the University of Maryland s Department of Astronomy, has charted the environment surrounding a relatively...
In this artist s rendering, a thick accretion disk has formed around a supermassive black hole following the tidal disruption of a star that wandered too close. Stellar debris has...
This image, taken by NASA s Hubble Space Telescope, reveals an unusual sight a runaway quasar fleeing from its galaxy s central hub. A quasar is the visible, energetic signature...