The professionals who predict the future for a living

The professionals who predict the future for a living
I’ve spoken to people who want climate model information, but they’re not really sure what they’re asking me for. So I say to them, “Suppose I tell you that some event will happen with a probability of 60% in 2030. Will that be good enough for you, or will you need 70%? Or would you need 90%? What level of information do you want out of climate model projections in order to be useful?”

I joined Jim Hansen’s group in 1979, and I was there for all the early climate projections. And the way we thought about it then, those things are all still totally there. What we’ve done since then is add richness and higher resolution, but the projections are really grounded in the same kind of data, physics, and observations.

Still, there are things we’re missing. We still don’t have a real theory of precipitation, for example. But there are two exciting things happening there. One is the availability of satellite observations: looking at the cloud is still not totally utilized. The other is that there used to be no way to get regional precipitation patterns through history—and now there is. Scientists found these caves in China and elsewhere, and they go in, look for a nice little chamber with stalagmites, and then they chop them up and send them back to the lab, where they do fantastic uranium--thorium dating and measure oxygen isotopes in calcium carbonate. From there they can interpret a record of  historic rainfall. The data are incredible: we have got over half a million years of precipitation records all over Asia.

I don’t see us reducing fossil fuels by 2030. I don’t see us reducing CO2 or atmospheric methane. Some 1.2 billion people in the world right now have no access to electricity, so I’m looking forward to the growth in alternative energy going to parts of the world that have no electricity. That’s important because it’s education, health, everything associated with a Western standard of living. That’s where I’m putting my hopes.

Dvora Photography

Futurist, Kjaer Global, London

As a kid I wanted to become an archaeologist, and I did in a way. Archaeologists find artifacts from the past and try to connect the dots and tell a story about how the past might have been. We do the same thing as futurists; we use artifacts from the present and try to connect the dots into interesting narratives in the future.

When it comes to the future, you have two choices. You can sit back and think “It’s not happening to me” and build a great big wall to keep out all the bad news. Or you can build windmills and harness the winds of change.

A lot of companies come to us and think they want to hear about the future, but really it’s just an exercise for them—let’s just tick that box, do a report, and put it on our bookshelf.

So we have a little test for them. We do interviews, we ask them questions; then we use a model called a Trend Atlas that considers both the scientific dimensions of society and the social ones. We look at the trends in politics, economics, societal drivers, technology, environment, legislation—how does that fit with what we know currently? We look back maybe 10, 20 years: can we see a little bit of a trend and try to put that into the future?

What’s next? Obviously with technology we can educate much better than we could in the past. But it’s a huge opportunity to educate the parents of the next generation, not just the children. Kids are learning about sustainability goals, but what about the people who actually rule our world?

Courtesy Photo

Coauthor of Superforecasting and professor, University of Pennsylvania

At the Good Judgment Project, we try to track the accuracy of commentators and experts in domains in which it’s usually thought impossible to track accuracy. You take a big debate and break it down into a series of testable short-term indicators. So you could take a debate over whether strong forms of artificial intelligence are going to cause major dislocations in white-collar labor markets by 2035, 2040, 2050. A lot of discussion already occurs at that level of abstraction—but from our point of view, it’s more useful to break it down and to say: If we were on a long-term trajectory toward an outcome like that, what sorts of things would we expect to observe in the short term? So we started this off in 2015, and in 2016 AlphaGo defeated people in Go. But then other things didn’t happen: driverless Ubers weren’t picking people up for fares in any major American city at the end of 2017. Watson didn’t defeat the world’s best oncologists in a medical diagnosis tournament. So I don’t think we’re on a fast track toward the singularity, put it that way.

Forecasts have the potential to be either self-fulfilling or self-negating—Y2K was arguably a self-negating forecast. But it’s possible to build that into a forecasting tournament by asking conditional forecasting questions: i.e., How likely is X conditional on our doing this or doing that?

What I’ve seen over the last 10 years, and it’s a trend that I expect will continue, is an increasing openness to the quantification of uncertainty. I think there’s a grudging, halting, but cumulative movement toward thinking about uncertainty, and more granular and nuanced ways that permit keeping score.

Ryan Young

Associate professor of economics, UCLA

When I worked on Uber’s surge pricing algorithm, the problem it was built to solve was very coarse: we were trying to convince drivers to put in extra time when they were most needed. There were predictable times—like New Year’s—when we knew we were going to need a lot of people. The deeper problem was that this was a system with basically no control. It’s like trying to predict the weather. Yes, the amount of weather data that we collect today—temperature, wind speed, barometric pressure, humidity data—is 10,000 times greater than what we were collecting 20 years ago. But we still can’t predict the weather 10,000 times further out than we could back then. And social movements—even in a very specific setting, such as where riders want to go at any given point in time—are, if anything, even more chaotic than weather systems.
Read more on Technology Review
News Topics :
It is extremely difficult to battle climate change when those in charge are resistant to the science that points to its future danger. Climate scientist s projections are not just...
On the left is an image of the global circulation pattern on a normal day. On the right is the image of the global circulation pattern when extreme weather occurs....
Deep learning software may help scientists predict extreme weather patterns more accurately than relying on today s weather prediction models alone. Simulations involving complex differential equations are run on supercomputers to...
On 14 April more snow fell on Chicago than it had in nearly 40 years. Weather services didn’t see it coming they forecast one or two inches at worst. But...
Close Japanese scientists and their international partners have found that additional weather observations in the Arctic can help predict the track and intensity of tropical and mid latitude cyclones more accurately,...