Hayabusa2: Asteroid mission exploring a rubble pile

Hayabusa2: Asteroid mission exploring a  rubble pile
The asteroid being explored by the Japanese mission Hayabusa2 is a "rubble pile" formed when rocks were blasted off a bigger asteroid and came back together again.

The discovery means that asteroid Ryugu has a parent body out there somewhere, and scientists already have two candidates.

They have also found a chemical signature across the asteroid that can indicate the presence of water, but this needs confirmation.

Ryugu s unusual shape is also a sign that it must have been spinning much faster in the past.

Scientists from the Japanese Space Agency (Jaxa) mission and from Nasa s Osiris-Rex spacecraft, which is exploring a different asteroid called Bennu, have been presenting their latest findings at the 50th Lunar and Planetary Science Conference (LPSC) in The Woodlands, Texas.

The Hayabusa2 team has also published their results over three papers in Science journal.

Meanwhile, the team behind the Osiris-Rex mission have made the first close-up observations of particle plumes erupting from an asteroid s surface. Their findings are published in a suite of papers published in Nature s journals.

Bennu and Ryugu have many similarities. They are comparable in size, rich in carbon and shaped like spinning tops. Both missions aim to deliver samples from these objects to Earth.

Media playback is unsupported on your device

Media captionA camera captures the moment Hayabusa-2 touches down on an asteroid

Both asteroids are primitive objects, made of the same basic material that went into building rocky planets like Earth. Studying samples in laboratories could shed light on how our own world came to be.

The identification of Ryugu as a rubble pile asteroid comes from measurement of its density. Project scientist Sei-ichiro Watanabe said the asteroid s porosity - a measure of the voids, or spaces, present in the object - was 50%.

The large number of rough boulders on Ryugu s surface support this idea, he added. These boulders are probably fragments that joined up after the disruption of its parent body.

The spinning top shape, Dr Watanabe said, "was formed from a past rapid rotation".

He added: "Most of the known top shapes are rapid rotators, but Ryugu is rather slow."

In fact, the scientists think that Ryugu once spun at twice its current rotation period of once every 7.6 hours. At some point in its history, the object slowed down, though what happened to cause this remains unclear.

Team member Seiji Sugita, from the University of Tokyo, said: "The size of Ryugu is very small - 800 or 900m across. It s too small to survive the entire Solar System evolution of 4.6 billion years. Ryugu must have been born from a much older and larger parent body in relatively recent times - several hundred million years."

Analysis of the reflected sunlight from Ryugu shows it is a close match to two larger asteroids, known as Polana and Eulalia. These are good potential candidates for the asteroid s parent body.

Ryugu is surprisingly dark, much darker than any carbonaceous chondrite meteorites, which could partly be due to exposure of the rocks to the space environment.

Image caption The asteroid Bennu was also found to be more rugged than expected

"The surface of Ryugu is extremely dark," said Ralph Milliken, a co-investigator on the NIRS3 instrument from Brown University in Rhode Island.

He held up a 3D-printed model of Ryugu saying that he suspected the jet-black plastic used to make it was brighter than the real thing.

Data from the near-infrared spectrometer instrument (NIRS3) aboard Hayabusa2 has also revealed the presence of minerals with hydroxyl groups (OH), which can indicate the presence of water.

"There is evidence for water on Ryugu, but we do not have any strong evidence yet for the presence of molecular water, H2O," said Ralph Milliken, a co-investigator on the NIRS3 instrument from Brown University in Rhode Island.

The particular hydroxyl groups found on Ryugu appear to be associated with the element magnesium, which is often associated with clay minerals in meteorites.

Bennu also appears to be a rubble pile asteroid, and, like Ryugu, was much more rugged than expected - posing a hazard for sample collection.

Hayabusa2 has just finished a touchdown operation to collect a sample of rock and cache it for return to Earth.

Although there was no way to confirm if Hayabusa2 had collected a sample, project manager Yuichi Tsuda said the team was confident it had, judging from the large amount of material kicked up after the spacecraft fired a 5g tantalum "bullet" into Ryugu s surface.

During the touchdown operation, Hayabusa2 s thrusters shifted 50cm-1m rocks, Yuichi Tsuda said. The thrusters also blew away the top layer of regolith, revealing darker material underneath.

Mission scientists have also set a date for Hayabusa2 s next set piece: the kinetic impact experiment. This will involve the spacecraft detonating an explosive charge near the surface of Ryugu - generating an artificial crater.

The spacecraft will move to the other side of Ryugu for safety when the charge goes off, returning later to grab a sample of rock from within the crater. The idea is for Hayabusa2 to get at pristine samples from below the surface, samples that haven t been altered by aeons of exposure to space.
News Topics :
Similar Articles :
YONAGO, JAPANJapan s Hayabusa mission made history in 2010 for bringing back to Earth the first samples ever collected on an asteroid. But the 7 year, 4 billion kilometer odyssey was marked by...
Japans Hayabusa2 successfully completed its second touchdown on the asteroid Ryugu and probably captured material from its interior that was exposed by firing a projectile into the asteroid earlier this...
We traveled millions of miles from Earth to visit a pile of rubble in space. Luckily, Ryugu, the near Earth asteroid visited by the Japanese Hayabusa2 probe, is far more interesting...
SAGAMIHARA, JAPANAfter 3.5 years traveling 3.2 billion kilometers through space, Japans Hayabusa2 spacecraft officially arrived at the asteroid it will land on later this year to pick up surface and...
Top Stories
On a primitive piece of space rock more than 100 million miles from Earth, two tiny robotic explorers took their first cautious “hops” this weekend – the first movements made...