News

Evolution: Speciation in the presence of gene flow

Evolution: Speciation in the presence of gene flow
Science
Spatial isolation is known to promote speciation -- but researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown that, at least in yeast, the opposite is also true. New ecological variants can also evolve within thoroughly mixed populations.

advertisement

The idea that speciation is based on the selection of variants that are better adapted to the local environmental conditions is at the heart of Charles Darwin s theory of the origin of species -- and it is now known to be a central component of biological evolution, and thus of biodiversity. Geographic isolation of populations is often regarded as a necessary condition for ecotypes to diverge and eventually form new species. When populations of a given species are separated by geographic barriers, favorable mutations that emerge in either can become fixed locally, as mating between the two populations is precluded. Whether or not speciation can occur under conditions in which gene flow between two populations is possible -- such that genetic mixing can still occur -- remains controversial. In order to resolve the issue, LMU evolutionary biologist Jochen Wolf and his group in cooperation with Simone Immler (University of East Anglia, UK) have used baker s yeast as a model system to experimentally explore what happens when the degree of gene flow between genetically differentiated populations is gradually increased.

Having obtained these genetically differentiated populations, the researchers proceeded to mix them in various proportions and monitored their subsequent evolution. "We first observed what would be expected according to the classical isolation model, when the top and bottom populations were kept strictly separated from one another," says Wolf. Under these conditions, the two geographically isolated populations continued to adapt to the demands of their respective niches and rapidly diverged from each other, becoming clearly distinct with time. For example, the top cells preferentially reproduced by asexual cell division, and therefore grew at a much higher rate than their bottom counterparts. Owing to the concomitant drop in the frequency of mating, the cells in the upper compartment also produced fewer sexual spores. "This finding confirms that the effects of selection do not remain constant over an organism s life cycle. Instead, selection is associated with trade-offs . In other words, mutations that may be advantageous in one context may be deleterious in another," Wolf explains

In the next step, Wolf and his colleagues simulated the effects of migration between the two populations. They did so by first adding approximately 1% of the minority population to the dominant fraction, and then progressively increasing the proportion of the former in each succeeding generation until the two populations had been thoroughly mixed. Theoretical models suggest that mixing should lead to a homogenization of the gene pool, and should therefore lead to a reduction in the diversity of the mixed population. This effect was in fact observed at intermediate levels of mixing. Although such mixtures continue to evolve and their members can increase their fitness relative to the ancestral population, distinctly different variants can no longer be discerned within them.

"But to our surprise, when the populations had been thoroughly mixed over time, we found very marked differences in phenotype," says Wolf. "When the tap is turned on fully, so to speak, one suddenly finds that mixtures contain two distinct variants, a generalist and a specialist." The generalist can survive equally well in the top or bottom compartment. This is not true of the specialist. But it divides at a faster rate than the generalist, and can therefore compensate for its lack of versatility. In Wolf s view, the emergence of these two classes can be regarded as the first step in a speciation process which takes place in the presence of maximal gene flow.

In addition to these phenotypic results, the team characterized the full genetic inventory of all populations. These genetic experiments show that adaptation to top and bottom compartments in the absence of gene flow is accompanied by the selection of genetic variants from among those that were already present in the progenitor population. In contrast, the emergence of specialist lineages in 50:50 mixtures is attributable to newly acquired mutations. And such mutations are obviously not in short supply: "The mutations seen in our replicates are completely independent. We very seldom see the same mutation in different samples -- yet the phenotypic division between generalists and specialists in completely mixed populations has been observed repeatedly," Wolf says.

These results are of significance in the context of how populations react to alterations in the character and distribution of variable niches. "It has always been assumed that interruption of gene flow is a prerequisite for adaptive divergence," says Wolf. "But our study shows that, even when populations are highly connected, diverse adaptations can nevertheless emerge, such that all available niches can be filled."

Materials provided by Ludwig-Maximilians-Universität München . Note: Content may be edited for style and length.

Ludwig-Maximilians-Universität München. "Evolution: Speciation in the presence of gene flow." ScienceDaily. ScienceDaily, 13 January 2021. .

Ludwig-Maximilians-Universität München. "Evolution: Speciation in the presence of gene flow." ScienceDaily. www.sciencedaily.com/releases/2021/01/210113120737.htm (accessed January 13, 2021).

advertisement

1

June 26, 2019 — Genes which are specific to a species or group of species can reflect important genetic changes within lineages. Often, such lineage-specific genes are found to play a role within sexual ...

Dec. 12, 2018 — New research suggests that populations of the Northern Cardinal -- one of the most ubiquitous backyard birds in the United States -- are undergoing speciation in two adjacent deserts. This study, ...

Aug. 25, 2016 — If two species are mutualists -- that is, each benefits from the activity of the other -- the Red King Theory predicts that they should evolve at a slower rate, so as to avoid interrupting their ...

Feb. 11, 2016 — Almost all of our genes may be influenced by the food we eat, suggests new research. The study, carried out in yeast -- which can be used to model some of the body s fundamental processes -- ...
Read more on sciencedaily.com
News Topics :
Similar Articles :
Science
Carrion crows and hooded crows are almost indistinguishable genetically, and hybrid offspring are fertile. Ludwig Maximilians Universitaet LMU in Munich biologists now show that the two forms have remained distinct largely owing...
Science
A new study led by Ludwig Maximilians Universitaet LMU in Munich researchers shows that fluctuations in population sizes in the past have had a significant effect on contemporary seal populations, and estimates...
Science
Although carrion crows and hooded crows are almost indistinguishable genetically, they avoid mating with each other. Researchers from Ludwig Maximlian Universitaet LMU in Munich have now identified a mutation that appears to...
Science
Bold great tits lay their eggs earlier when under threat, the shy ones put it off. Such personality differences help maintain the biological variation essential for the survival of populations,...
Science
The mechanisms by which new species arise are still not fully understood. What are the evolutionary processes that drive the evolution of new species Evolutionary biologists traditionally assumed that geographical...