New potential for functional recovery after spinal cord injury

New potential for functional recovery after spinal cord injury
Researchers at Indiana University School of Medicine have successfully reprogrammed a glial cell type in the central nervous system into new neurons to promote recovery after spinal cord injury -- revealing an untapped potential to leverage the cell for regenerative medicine.


The group of investigators published their findings March 5 in Cell Stem Cell. This is the first time scientists have reported modifying a NG2 glia -- a type of supporting cell in the central nervous system -- into functional neurons after spinal cord injury, said Wei Wu, PhD, research associate in neurological surgery at IU School of Medicine and co-first author of the paper.

Wu and Xiao-Ming Xu, PhD, the Mari Hulman George Professor of Neuroscience Research at IU School of Medicine, worked on the study with a team of scientists from the University of Texas Southwestern Medical Center. Xu is also a primary member of Stark Neurosciences Research Institute, where he leads the Indiana Spinal Cord and Brain Injury Research Group.

Spinal cord injuries affect hundreds of thousands of people in the United States, with thousands more diagnosed each year. Neurons in the spinal cord don t regenerate after injury, which typically causes a person to experience permanent physical and neurological ailments.

"Unfortunately, effective treatments for significant recovery remain to be developed," Xu said. "We hope that this new discovery will be translated to a clinically relevant repair strategy that benefits those who suffer from a spinal cord injury."

When the spinal cord is injured, glial cells, of which there are three types -- astrocyte, ependymal and NG2 -- respond to form glial scar tissue.

"Only NG2 glial cells were found to exhibit neurogenic potential in the spinal cord following injury in adult mice, but they failed to generate mature neurons," Wu said. "Interestingly, by elevating the critical transcription factor SOX2, the glia-to-neuron conversion is successfully achieved and accompanied with a reduced glial scar formation and increased functional recovery following spinal cord injury."

The researchers reprogrammed the NG2 cells from the mouse model using elevated levels of SOX2 -- a transcription factor found inside the cell that s essential for neurogenesis -- to neurons. This conversion has two purposes, Xu said: generate neurons to replace those lost due to a spinal cord injury and reduce the size of the glial scars in the lesion area of the damaged tissue.

This discovery, Wu said, serves as an important target in the future for potential therapeutic treatments of spinal cord injury.

The partnership between the laboratory of Chun-Li Zhang, PhD, professor at UT Southwestern Medical Center, and Xu s laboratory at IU School of Medicine greatly benefited the research, Xu added, by offering complementary expertise in neuronal reprogramming and in spinal cord injury, respectively.

"Such a collaboration will be continued between the two laboratories to address neuronal remodeling and functional recovery after successful conversion of glial cells into functional neurons in future," Xu said.

Materials provided by . Note: Content may be edited for style and length.

Indiana University School of Medicine. "New potential for functional recovery after spinal cord injury." ScienceDaily. ScienceDaily, 5 March 2021. .

Indiana University School of Medicine. "New potential for functional recovery after spinal cord injury." ScienceDaily. (accessed March 5, 2021).



Apr. 8, 2019 — Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body. Studying the mechanisms of recovery, a researcher found that a specific ...

Dec. 10, 2018 — Neurons in the brain and spinal cord don t grow back after injury, unlike those in the rest of the body. Now, researchers have identified some of the key steps taken by nerves in the legs as they ...

May 2, 2018 — Researchers trying to help people suffering from paralysis after a spinal cord injury or stroke mapped critical brain-to-spinal cord nerve connections that drive voluntary movement in forelimbs, a ...

Apr. 8, 2016 — Researchers genetically modified cord blood which managed to increase tissue sparing and numbers of regenerated axons, reduce glial scar formation and promote behavioral recovery when transplanted ...
News Topics :
The replacement of lost neurons is a holy grail for neuroscience. A new promising approach is the conversion of glial cells into new neurons. Improving the efficiency of this conversion...
A new gene therapy turns glial cells abundant support cells in the brain into neurons, repairing damage that results from stroke and significantly improving motor function in mice....
Mouse neurons are shown with the cell bodies in the center and long tendrils radiating outward. Valeria Cavalli, PhD, of Washington University School of Medicine in St. Louis, used such...
Writing in the journal Stem Cells Translational Medicine, an international research team, led by physician scientists at University of California San Diego School of Medicine, describe a new method for delivering...
Large numbers of human, green fluorescent protein expressing axons emerge from a lesion/graft site and grow caudally in linear arrays. Many axons travel along the interface indicated by arrows between spinal...