News

Observation of quasi-equilibrium phase coexistence in supercritical fluids

Observation of quasi-equilibrium phase coexistence in supercritical fluids
Science
A team of researchers led by Professor Gunsu S. Yun from POSTECH s Department of Physics and the Division of Advanced Nuclear Engineering and Professor Dong Eon Kim of the Department of Physics and Max Planck POSTECH/Korea Research Initiative (MPK) has observed the non-equilibrium phase coexistence in supercritical fluids lasting several hours. The researchers explained the phenomenon through a mass transport model at the phase coexistence interface, where the transport occurs in chunk of nano-sized clusters instead of single atoms.

It has been accepted as scientific knowledge for about 200 years that when the temperature and pressure of a fluid rise above a certain level called the critical point, the boundary between liquid and gas disappears and a change of state no longer occurs. However, in the 2010s, research findings reported that supercritical fluids may have liquid or gas properties depending on temperature and pressure conditions. Since then, it has been continuously confirmed through various experiments and simulations that multiple states exist in the supercritical fluid region. However, the possibility of a state in which a plurality of phases coexists rather than a single phase at the same temperature and pressure point -- that is, a state similar to that in which a general liquid and gas coexist after phase separation -- has not been discussed.

To this, the joint research team, in the process of making a supercritical argon fluid using a high-pressure chamber that operates in successive compression-expansion cycles, demonstrated a state where a large amount of argon droplets (formed by adiabatic expansion cooling) coexist with the gas-like supercritical background while maintaining their liquid-like properties. The state where these two phases coexist in isolation persists a surprisingly long time and the researchers presented a new mass transport model mediated by nano-clusters -- an improvement on the conventional evaporation model -- to explain the phenomenon.

Supercritical fluids are being used in various industries such as heat exchange systems in power plants, pharmaceutical processes, semiconductor cleaning, and food processing thanks to their beneficial properties such as low viscosity and high solubility. The non-equilibrium phase coexistence in supercritical fluids discovered in this study has a significant impact on the physical and chemical properties such as heat capacity, thermal conductivity, and viscosity, which may prove important for supercritical fluid processing in industrial applications.

"Research on nonequilibrium of supercritical fluids is not only helpful in industrial processes, but also helpful in understanding various supercritical fluids that exist in the natural world, as in the atmospheres of planets such as Venus and Jupiter, volcanic eruptions, and fluids in the Earth s crust," remarked Professor Gunsu S. Yun who participated as a co-corresponding author in the study. "Our findings will contribute to understanding the transport properties of supercritical fluids." He added, "We are conducting research to theoretically interpret nonequilibrium phase coexistence in supercritical fluids beyond experimental results."

The findings from this study were published on July 30, 2021 in Nature Communications. The research was conducted with the support from the National Research Foundation of Korea and the Max Planck Korea/POSTECH Research Initiative.

Materials provided by . Note: Content may be edited for style and length.

Pohang University of Science & Technology (POSTECH). "Observation of quasi-equilibrium phase coexistence in supercritical fluids." ScienceDaily. ScienceDaily, 13 September 2021. .

Pohang University of Science & Technology (POSTECH). "Observation of quasi-equilibrium phase coexistence in supercritical fluids." ScienceDaily. www.sciencedaily.com/releases/2021/09/210913135739.htm (accessed September 14, 2021).

advertisement

1

May 28, 2021 — A research team has designed a simple electromechanical device that can be used for deep tissue pathology diagnosis, such as psoriasis, in an automated and non-invasive fashion. The findings will lay ...

Mar. 22, 2021 — A team of scientists have developed the thinnest and most sensitive flow sensor, which could have significant implications for medical research and applications, according to new ...

Aug. 20, 2018 — Researchers are exploring how supercritical carbon dioxide could serve as a cleaner, safer, and more flexible working fluid in power plants than supercritical water by using supercomputing resources ...

Feb. 1, 2017 — As part of her team s research into matter s tendency to self-organize, a researcher ran a series of hard particle simulations to study melting in two-dimensional (2-D) systems. ...
Read more on sciencedaily.com
News Topics :
RELATED STORIES :
Technology
A Korean research team has identified the origin of bifurcated current sheets, considered one of the most unsolved mysteries in the Earth s magnetosphere and in magnetized plasma physics. advertisement...
Technology
As the demand for electric vehicles rises, interest grows for all solid state batteries, which are next generation batteries that will replace lithium ion batteries that are inherently dangerous due to their explosive...
Science
The last several years have brought mounting evidence that the molecules inside our cells can self organize into liquid droplets that merge and separate like oil in water in order to...
Technology
There have been studies to explain this strong interaction between electrons and their characteristic energy scales, but no direct observation on such energy scales through theory or experiments has been...
Science
The COVID 19 pandemic is raising fears of new pathogens such as new viruses or drug resistant bacteria. To this, a Korean research team has recently drawn attention for developing the technology...