News

Bacteria: Serving tasty solution to global plastic crisis

Bacteria: Serving tasty solution to global plastic crisis
Technology
Researchers have discovered that the common bacteria E. coli can be deployed as a sustainable way to convert post-consumer plastic into vanillin, a new study reveals.

advertisement

Vanillin is the primary component of extracted vanilla beans and is responsible for the characteristic taste and smell of vanilla.

The transformation could boost the circular economy, which aims to eliminate waste, keep products and materials in use and have positive impacts for synthetic biology, experts say.

The world s plastic crisis has seen an urgent need to develop new methods to recycle polyethylene terephthalate (PET) -- the strong, lightweight plastic derived from non-renewable materials such as oil and gas and widely used for packaging foods and convenience-sized juices and water.

Approximately 50 million tonnes of PET waste is produced annually, causing serious economic and environmental impacts. PET recycling is possible, but existing processes create products that continue to contribute to plastic pollution worldwide.

To tackle this problem, scientists from the University of Edinburgh used lab engineered E. coli to transform terephthalic acid -- a molecule derived from PET -- into the high value compound vanillin, via a series of chemical reactions.

advertisement

The team also demonstrated how the technique works by converting a used plastic bottle into vanillin by adding the E. coli to the degraded plastic waste.

Researchers say that the vanillin produced would be fit for human consumption but further experimental tests are required.

Vanillin is widely used in the food and cosmetics industries, as well as the formulation of herbicides, antifoaming agents and cleaning products. Global demand for vanillin was in excess of 37,000 tonnes in 2018.

Joanna Sadler, first author and BBSRC Discovery Fellow from the School of Biological Sciences, University of Edinburgh, said: "This is the first example of using a biological system to upcycle plastic waste into a valuable industrial chemical and this has very exciting implications for the circular economy.

"The results from our research have major implications for the field of plastic sustainability and demonstrate the power of synthetic biology to address real-world challenges."

Dr Stephen Wallace, Principle Investigator of the study and a UKRI Future Leaders Fellow from the University of Edinburgh, said: "Our work challenges the perception of plastic being a problematic waste and instead demonstrates its use as a new carbon resource from which high value products can be obtained."

Dr Ellis Crawford, Publishing Editor at the Royal Society of Chemistry, said: "This is a really interesting use of microbial science at the molecular level to improve sustainability and work towards a circular economy. Using microbes to turn waste plastics, which are harmful to the environment, into an important commodity and platform molecule with broad applications in cosmetics and food is a beautiful demonstration of green chemistry."

The study, published in Green Chemistry lays the foundation for further studies to maximize vanillin production towards industrially relevant levels.

The research was funded by a BBSRC Discovery Fellowship and a UKRI Future Leaders Fellowship.

Materials provided by University of Edinburgh . Note: Content may be edited for style and length.

University of Edinburgh. "Bacteria: Serving tasty solution to global plastic crisis." ScienceDaily. ScienceDaily, 10 June 2021. .

University of Edinburgh. "Bacteria: Serving tasty solution to global plastic crisis." ScienceDaily. www.sciencedaily.com/releases/2021/06/210610135752.htm (accessed June 11, 2021).

advertisement

1

June 2, 2021 — A study provides new insights into the pollution of the world s oceans with plastic waste. The modelling shows that most of the plastic does not end up in the open ocean, but beaches or drifts ...

May 7, 2020 — Plastic waste often ends up in river bodies and oceans, posing a serious threat to the marine ecosystem. To prevent the accumulation of plastic debris, we must find out where plastic emission is ...

Oct. 18, 2019 — A research group has developed an efficient process for breaking down any plastic waste to a molecular level. The resulting gases can then be transformed back into new plastics - of the same quality ...

June 20, 2018 — Scientists have calculated the potential global impact of China s ban on plastic waste imports and how this policy might affect efforts to reduce the amount of plastic waste entering the ...
Read more on sciencedaily.com
News Topics :
RELATED STORIES :
Technology
Sandia National Laboratories scientists Seema Singh, left; and Fang Liu hold vials of vanillin and fermentation broth, which are critical for turning plant matter into biofuels and other valuable chemicals....
Technology
A faster, more efficient way of recycling plant based bioplastics has been developed by a team of scientists at the Universities of Birmingham and Bath. advertisement The team has shown how...
Technology
Researchers have developed a new method for upcycling abundant, seemingly low value plastics into high quality liquid products, such as motor oils, lubricants, detergents and even cosmetics. The discovery also improves on...
Technology
Two young Canadian scientists have created a process that can break down plastics that would otherwise end up in landfills or oceans. BioCellection , a California based environmental start up founded by...
Technology
Researchers at TU Graz have found a way to convert the aromatic substance vanillin into a redox active electrolyte material for liquid batteries. The technology is an important step towards ecologically...